
Vortices-induced quantum Röntgen effect in BEC: a consistent approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 045304

(http://iopscience.iop.org/1751-8121/41/4/045304)

Download details:

IP Address: 171.66.16.152

The article was downloaded on 03/06/2010 at 07:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/4
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 045304 (8pp) doi:10.1088/1751-8113/41/4/045304

Vortices-induced quantum Röntgen effect in BEC:
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Abstract
Through the application of φ-mapping topological theory, the properties of
vortices in quantum Röntgen effect are thoroughly studied. The explicit
expression of the vorticity is obtained, in which the δ function indicates that the
vortices can only stem from the zero points of φ, and the magnetic flux of the
consequent monopoles is quantized in terms of the Hopf indices and Brouwer
degrees. The evolution of vortex lines is discussed. The reduced dynamic
equation and a conserved dynamic quantity on stable vortex lines are obtained.

PACS numbers: 03.75.Lm, 03.70.+k, 47.32.−y

1. Introduction

Intensive studies, both theoretical and experimental, have been carried out since the advent of
Bose–Einstein condensate [1, 2]. Because of its unique features, novel methods of investigation
have been springing up in recent decades. By virtue of recent theory on quantum phase
of induced dipoles [3–6], Leonhardt and Piwnicki studied quantum Röntgen effect via a
mean-field approach (the Gross–Pitaevskii theory) and obtained some intriguing results on its
quantized monopoles [7].

Given a charged capacitor and a dielectric (such as glass, robber, etc) disc placed parallel
between the plates, the disc would easily be polarized, and, while it rotates, the induced
charges on its opposite surfaces would act as currents and then generate a magnetic field. This
effect, which is known as Röntgen effect, was discovered by W C Röntgen in 1888 [8]. Recent
interests in Röntgen effect have taken place due to its promising perspective in the research
of quantum gases. For example, if the ordinary dielectric disc be replaced by a quantum
dielectric disc (a Bose–Einstein condensate), Leonhardt and Piwnicki showed in their paper
that only vortices would generate a magnetic field and the field would behave as it originates
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from a set of magnetic monopoles [8]. Despite their ingenuity, they employed the traditional
way to express the wavefunction

ψ = |ψ | eiS, (1)

which inevitably leads to the irrotational result

∇ × �u = ∇ ×
(

h̄

m
∇S

)
= 0, (2)

and causes an irreconcilable flaw to the whole theory.
Through years of study, we have formulated a systematic approach to solve such

problems—we call it φ-mapping topological theory. By describing the physical system in
question with another vector field �φ, we can explicitly show its topological structures and
topological invariants, especially the δ functional behavior of the singularities. Basic details
can be found in [9]; further results have been provided in various physical systems [10–14].

In this paper, through the application of φ-mapping topological theory, we will not only
solve the problem that exists in Leonhardt and Piwnicki’s work, but will also provide a
thorough study on the behavior of vortices in quantum Röntgen effect. The results we obtain
here would be very conducive to further theoretical and experimental investigation of BEC.

This paper is organized as follows: in section 2, we first elucidate that the curl of the
velocity field is

∇ × �u = h

m
�J
(

φ

x

)
δ2(�φ), (3)

which indicates that the magnetic monopoles are generated from the zero points of ψ (i.e. the
locations of vortices). While those zero points are regular points, the magnetic flux of the
monopoles is quantized in terms of the Hopf indices βi and Brouwer degrees ηi of φ-mapping.

In section 3, we study the critical points of ψ , i.e., the limit points and bifurcation points,
and show the existence of branch processes. The vortex lines generate, annihilate, split or
merge at such points, while their topological number—winding number—βη is conserved.

In section 4, we investigate the reduced dynamic equation and obtain a conserved dynamic
quantity on stable vortex lines. In section 5, we draw our conclusions. SI units are used
throughout the paper.

2. The quantized vorticity and magnetic flux

Our work begins with the Gross–Pitaevskii equation which one can readily obtain from the
Lagrangian density of [7]

ih̄
∂ψ

∂t
= 1

2m

(
h̄

i
∇ + α �E × �B

)2

ψ − α

2
E2ψ +

g

2
|ψ |2ψ + V ψ. (4)

As shown by Leonhardt and Piwnicki, the constant α denotes the electrical polarizability of
the condensed atoms; the Gross–Pitaevskii term g|ψ |2ψ(g > 0) models the atomic repulsion
(collision), which tends to smooth out density variations over the healing length h̄/

√
2gm|ψ |2;

and V stands for the external potential which prevents the condensate from spreading out to
infinity.

Instead of adopting the traditional expression (1), we shall write

ψ = φ1 + iφ2, (5)

where

φa = φa(x), a = 1, 2, (6)
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are real functions. It means that ψ can be described by a two-dimensional vector field
�φ = (φ1, φ2).

Substituting (5) into (4), we get the dynamic equation of the polarized condensed atoms

− h̄εabφ
a ∂

∂t
φb = − h̄2

2m
φa∇2φa +

h̄

m
(α �E × �B) · εabφ

a∇φb

+

[
1

2m
(α �E × �B)2 − α

2
E2 +

g

2
‖φ‖2 + V

]
‖φ‖2, (7)

as well as the continuity relation

∂

∂t
‖φ‖2 + ∇ ·

[(
h̄

m

1

‖φ‖2
εabφ

a∇φb +
α

m
�E × �B

)
‖φ‖2

]
= 0, (8)

where

‖φ‖2 = φaφa = ψ∗ψ (9)

describes the density of the condensed atoms.
Consequently, the velocity field takes the form

�u = h̄

m

1

‖φ‖2
εabφ

a∇φb +
α

m
�E × �B. (10)

In the following study, the second term is omitted as its contribution to the outcome is negligibly
small (which was shown in [7]).

Note that
φa

‖φ‖2
= 1

‖φ‖
∂

∂φa
‖φ‖ = ∂

∂φa
ln ‖φ‖, (11)

curl �u can be expressed as

∇ × �u = h̄

m
(∇φ1 × ∇φ2)

∂2

∂φa∂φa
ln ‖φ‖. (12)

By defining the Jacobian vector

�J
(

φ

x

)
= ∇φ1 × ∇φ2, (13)

and utilizing the Laplacian relation in φ space [15]

∂2

∂φa∂φa
ln ‖φ‖ = 2πδ2(�φ), (14)

(12) can be reduced to

∇ × �u = h

m
�J
(

φ

x

)
δ2(�φ). (15)

This explicit expression is the utter solution to the problem which we mentioned in
section 1. Actually, such a δ-functional behavior of the vorticity had been assumed by
Leonhardt and Piwnicki, but they were unable to provide any proof.

From the relation between �H and �u [7]

∇ · �H = ε0χ �E · (∇ × �u), (16)

we have

∇ · �H = h

m
ε0χ �E · �J

(
φ

x

)
δ2(�φ). (17)
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Therefore, one can easily reach the conclusion that ∇ · �H �= 0 (i.e.∇ · �u �= 0) if and only
if �φ = 0, the magnetic monopoles are generated from the zero points of �φ (i.e. the locations
of vortices). This makes the solution of �φ = 0 extremely significant.

Suppose the vector field �φ(x) has N zero points �zi(i = i, . . . , N). The implicit function
theorem assures us, while �zi(i = i, . . . , N) are the regular points of �φ(x), i.e. �J (

φ

x

)|�zi
�= 0,

they can be expressed as parameterized singular strings:

Li : �zi = �zi(t, s), i = 1, . . . , N. (18)

These N isolated singular strings are just the vortex lines.
For a fixed t, one can obtain the following result from the δ-function theory [15]

δ2(�φ) =
N∑

i=1

βi

∫
Li

δ3(�x − �zi(s))

|J (φ/u)|�i

ds, (19)

where �i is the ith planer element transversal to Li with local coordinates (u1, u2), J
(

φ

u

) =
∂(φ1,φ2)

∂(u1,u2)
, and βi is a positive integer known as the Hopf index of φ-mapping.

Since the direction vector of Li is given by

d�x
ds

∣∣∣∣
�zi

=
�J (φ/x)

J (φ/u)

∣∣∣∣
�zi

, (20)

we then have

∇ × �u = h

m

N∑
i=1

βiηi

∫
Li

d�x
ds

δ3(�x − �zi(s)) ds, (21)

where ηi = sgn J
(

φ

u

) = ±1 is the Brouwer degree, and it characterizes the direction of the ith
vortex line. This expression shows the important inner topological structure of ∇ × �u.

Thus, the vorticity of the condensate is

� =
∫

�

∇ × �u · d�S = h

m

N∑
i=1

βiηi, (22)

and the magnetic flux of the consequent monopoles can be worked out as

 =
∫

µ0∇ · �Hdv = h

mc2
χU

N∑
i=1

βiηi = χ

c2
U�. (23)

Here U denotes the applied voltage of the capacitor, χ is the susceptibility. It is obvious that
both � and  are quantized by the product βη, which is called the winding number.

3. The evolution of vortex lines

The discussion we have been carrying on so far is under the condition that �zi(i = 1, . . . , N) are
regular points, but what happens when some �z∗ = (t∗, �x∗) are critical points (i.e. �J (

φ

x
)|�z∗ = 0)?

Soon we will prove that such vortex lines would no longer be stable—it would evolve. In other
words, generating and annihilating of vortex lines, as well as splitting and merging, would
take place.

If we still insist on using the implicit function theorem, we can assume that one of the
following Jacobians

Di

(
φ

x

) ∣∣∣∣
�z∗

= ∂(φ1, φ2)

∂(t, xi)

∣∣∣∣
�z∗

, i = 1, 2, 3, (24)

is nonzero.
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For simplicity, let us fix the z coordinate and consider the locus of �w∗ = (t∗, x∗, y∗).

Case 1. At least one of (24)’s Jacobians is nonzero. (Such �z∗ is called the limit point of �φ(x).)
Suppose D2

(
φ

x

)∣∣
�z∗ �= 0, near �w∗ we could locally solve �φ = 0 to obtain

t = t (x), y = y(x). (25)

By differentiating the identity �φ(x, t (x), y(x)) = 0 with respect to x, we yield

dt

dx
= − J 3(φ/x)

D2(φ/x)
,

dy

dx
= −D1(φ/x)

D2(φ/x)
. (26)

Then (25) can be expanded at �w∗ as

t = t∗ +
dt

dx

∣∣∣∣
�w∗

(x − x∗) +
1

2

d2t

dx2

∣∣∣∣
�w∗

(x − x∗)2 + o(|x − x∗|2), (27)

i.e.,

t − t∗ = 1

2

d2t

dx2

∣∣∣∣
�w∗

(x − x∗)2, (28)

which is a parabola on the xt plane.
Equation (28) reveals that there exist branch processes at the limit point. If d2t

dx2

∣∣
�w∗ > 0, we

have the branch solutions x1(t) and x2(t) for t > t∗, which represent the generating process.
If d2t

dx2

∣∣
�w∗ < 0, we have the branch solutions x ′

1(t) and x ′
2(t) for t < t∗, which represent the

annihilating process.
Besides, equation (28) can also show a simple approximate relation near �w∗

|x − x∗| ∝ |t − t∗| 1
2 , (29)

from which we can obtain the generating/annihilating speed:

v ∝ |t − t∗|− 1
2 . (30)

No mater which process takes place, from the identity ∇ · (∇ × �u) = 0, one can always
reach the conclusion that the winding number βη is conserved

β1η1 + β2η2 = 0, (31)

which indicates that the two vortex lines have the same Hopf index and opposite directions.

Case 2. All of (24)’s Jacobians are zero. (Such �z∗ is called the bifurcation point of �φ(x).)
Suppose one of the partial derivatives is nonzero. Let, for example, ∂φ1

∂y
�= 0. Again, according

to the implicit function theorem, near �w∗ we could locally solve φ1 = 0 to obtain

y = y(t, x). (32)

Let F(t, x) = φ2(t, x, y(t, x)), from

J 3

(
φ

x

) ∣∣∣∣
�z∗

= 0, D2

(
φ

x

) ∣∣∣∣
�z∗

= 0, (33)

one can respectively prove

∂F

∂x

∣∣∣∣
�z∗

= 0,
∂F

∂t

∣∣∣∣
�z∗

= 0. (34)

Then the Taylor expansion of F(x, t) in the neighborhood of �w∗ can be expressed as

F(x, t) = 1
2A(x − x∗)2 + B(x − x∗)(t − t∗) + 1

2C(t − t∗)2 + · · · , (35)
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where

A = ∂2F

∂x2
, B = ∂2F

∂x∂t
, C = ∂2F

∂t2
. (36)

Note that

F(t∗, x∗) = φ2(t∗, x∗, y(t∗, x∗)), (37)

we have

A

(
dx

dt

∣∣∣∣
�w∗

)2

+ 2B
dx

dt

∣∣∣∣
�w∗

+ C = 0

(
or C

(
dt

dx

∣∣∣∣
�w∗

)2

+ 2B
dt

dx

∣∣∣∣
�w∗

+ A = 0

)
. (38)

(1) If A �= 0, B2 − 4AC > 0, then(
dx

dt

∣∣∣∣
�w∗

)
1

= −B +
√

B2 − AC

A
,

(
dx

dt

∣∣∣∣
�w∗

)
2

= −B − √
B2 − AC

A
, (39)

which simply represent the intersection of two vortex lines.
(2) If A �= 0, B2 − 4AC = 0, then(

dx

dt

∣∣∣∣
�w∗

)
1

=
(

dx

dt

∣∣∣∣
�w∗

)
2

= −B

A
, (40)

which could be either one vortex line splits into two vortex lines, or two vortex lines
merge into one vortex line, with a speed of v = −B

A
. The same as before, the winding

number βη is conserved in the process, i.e.

β1η1 + β2η2 = βη. (41)

(3) If A = 0, B �= 0, then(
dx

dt

∣∣∣∣
�w∗

)
= − C

2B
, (42)

which simply describes the motion of one vortex line.

4. The reduced dynamic equation and conserved dynamic quantity on stable vortex
lines

In section 2, we have obtained the dynamic equation of the polarized condensed atoms (7):

−h̄εabφ
a ∂

∂t
φb = − h̄2

2m
φa∇2φa +

h̄

m
(α �E × �B) · εabφ

a∇φb

+

[
1

2m
(α �E × �B)2 − α

2
E2 +

g

2
‖φ‖2 + V

]
‖φ‖2. (43)

Note that

1

‖φ‖2
φa∇2φa = ∇2‖φ‖

‖φ‖ −
(

∇ φa

‖φ‖
)2

, (44)

we then have

h̄
1

‖φ‖2
εabφ

a ∂

∂t
φb = − h̄2

2m

(
∇ φa

‖φ‖
)2

− h̄

m
(α �E × �B) · 1

‖φ‖2
εabφ

a∇φb

− 1

2m
(α �E × �B)2 +

α

2
E2 − g

2
‖φ‖2 − U − V, (45)

6
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where

U = − h̄2

2m

∇2‖φ‖
‖φ‖ (46)

is the Bohm quantum potential [16].
Differentiate equation (45) with respect to coordinates. Using (10), it is easy to prove

− h̄2

2m
∇

(
∇ φa

‖φ‖
)2

= m�u × (∇ × �u) − ∇
(

1

2
mu2

)
+ ∇[(α �E × �B) · �u] +

1

2m
∇(α �E × �B)2,

(47)

h̄∇
(

1

‖φ‖2
εabφ

a ∂

∂t
φb

)
= m

∂�u
∂t

− m
∂�x
∂t

× (∇ × �u), (48)

then we obtain the reduced dynamical equation

m
∂�u
∂t

= m

(
�u +

∂�x
∂t

)
× (∇ × �u) − ∇

(
1

2
mu2 − α

2
E2 +

g

2
‖φ‖2 + U + V

)
. (49)

For stable vortex lines, ∂�u
∂t

= 0, we have

m

(
�u +

∂�x
∂t

)
× (∇ × �u) = ∇

(
1

2
mu2 − α

2
E2 +

g

2
‖φ‖2 + U + V

)
, (50)

then

∇
(

1

2
mu2 − α

2
E2 +

g

2
‖φ‖2 + U + V

)
· (∇ × �u) = 0. (51)

Just like the situation in fluid mechanics, on those vortex lines

(∇ × �u)i ∝ dxi. (52)

Equation (51) becomes

∂i

(
1

2
mu2 − α

2
E2 +

g

2
‖φ‖2 + U + V

)
dxi = 0, (53)

thus
1

2
mu2 − α

2
E2 +

g

2
‖φ‖2 + U + V = const. (54)

It is a conserved dynamics quantity on the stable vortex lines.

5. Conclusions

The use of φ-mapping topological theory has clarified the issue on the generation of vortices
in quantum Röntgen effect. The explicit expression of curl �u is given, from which we get
the vorticity of the velocity field and the magnetic flux of the monopoles; both of them are
quantized by the product of the Hopf indices and the Brouwer degrees. The generating,
annihilating, splitting and merging of vortex lines are discussed in detail, and the speeds of
these processes are estimated, which prove handy when experiments are concerned. The
reduced dynamic equation of the condensate is derived, from which we get a conserved
dynamic quantity on the stable vortex lines.
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